Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
1.
Expert Opin Biol Ther ; 23(8): 727-735, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36880118

RESUMO

BACKGROUND: Dulaglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, has been approved for improving glycemic control and reducing the risk of cardiovascular (CV) adverse events. This study compared the pharmacokinetic (PK) profiles, safety, and immunogenicity of LY05008, a biosimilar candidate, to a licensed product dulaglutide in healthy Chinese male subjects. RESEARCH DESIGN AND METHODS: In this double-blind, open-label, parallel-group study, healthy Chinese male subjects were randomized 1:1 to receive either LY05008 or dulaglutide subcutaneously. Primary study endpoints were PK parameters such as the area under the concentration-time curve (AUC) from time zero to infinity (AUC0 - ∞), AUC from time zero to the last quantifiable concentration (AUC0-t), and maximum serum concentration (Cmax). Safety and immunogenicity profiles were also included for data analysis. RESULTS: 82 subjects were randomized to receive LY05008 (n = 41) or dulaglutide (n = 41). The 90% confidence intervals (CIs) of the geometric mean ratios (GMRs) of AUC0 - ∞, AUC0-t and Cmax of LY05008 to dulaglutide were all within the bioequivalence limits of 80%-125%. Other PK parameters, safety, and immunogenicity profiles were comparable across the two treatment groups. CONCLUSION: This study demonstrated PK similarity of LY05008, a dulaglutide biosimilar, to dulaglutide in healthy Chinese male subjects, with comparable safety and immunogenicity data. TRIAL REGISTRATION: The trial is registered at the Chinese Clinical Trial Registry (Identifier No. ChiCTR2200066519).


Assuntos
Medicamentos Biossimilares , Fármacos Cardiovasculares , Hipoglicemiantes , Humanos , Masculino , Medicamentos Biossimilares/efeitos adversos , Medicamentos Biossimilares/metabolismo , Medicamentos Biossimilares/farmacocinética , Método Duplo-Cego , População do Leste Asiático , Fragmentos Fc das Imunoglobulinas/efeitos adversos , Fragmentos Fc das Imunoglobulinas/farmacologia , Equivalência Terapêutica , Voluntários Saudáveis , /farmacocinética , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/farmacocinética , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/farmacocinética , Peptídeos Semelhantes ao Glucagon/análogos & derivados
2.
J Cardiovasc Pharmacol Ther ; 27: 10742484221119559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35972237

RESUMO

OBJECTIVE: The purpose of this study was to determine the impact of varying inflation parameters on paclitaxel delivery and retention using a commercially available DCB. BACKGROUND: Drug-coated balloons (DCB) have become the standard treatment for peripheral artery disease. Clinical data suggest that varying DCB delivery parameters directly impact patient outcome. Differences in delivery parameters can potentially alter the retention of the drug coating on DCBs. METHODS: Harvested porcine carotid arteries were utilized in an ex vivo pulsatile flow bioreactor system. The DCBs were then deployed at a DCB-to-artery ratio of 1:1 or 1.25:1, an inflation time of 30 seconds or 1 minute and transit time of 30 seconds or 3 minutes. The amount of drug retention in arterial tissue was evaluated by pharmacokinetic analysis at 1 hour and 1 day post DCB deployment. RESULTS: Arterial paclitaxel levels were found to be less at an inflation ratio of 1:1 with 3-minute transit time as compared to 30 seconds of transit time at 1 hour (12.3 ± 1.6 ng/mg vs. 391 ± 139 ng/mg, P = .036). At 1-day, DCBs deployed at a ratio of 1:1 resulted in less drug retention as compared to 1.25:1 (61.3 ± 23.1 ng/mg vs. 404 ± 195 ng/mg, P = .013). CONCLUSION: Arterial paclitaxel retention is reduced with extended transit times and sub-optimal expansion of the balloon. Optimization of delivery parameters can serve as an effective strategy to enhance clinical DCB outcomes.


Assuntos
Angioplastia com Balão , Fármacos Cardiovasculares , Doença Arterial Periférica , Animais , Fármacos Cardiovasculares/farmacocinética , Materiais Revestidos Biocompatíveis , Artéria Femoral , Paclitaxel , Doença Arterial Periférica/terapia , Preparações Farmacêuticas , Suínos , Resultado do Tratamento
3.
BMC Complement Med Ther ; 22(1): 35, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120520

RESUMO

BACKGROUND: The chemokine CXCL12 and its two receptors (CXCR4 and CXCR7) are involved in inflammation and hematopoietic cell trafficking. This study was designed to investigate molecular docking interactions of four popular cardiovascular-active natural compounds; curcumin, resveratrol, quercetin, and eucalyptol; with these receptors and to predict their drug-like properties. We hypothesize that these compounds can modify CXCL12/CXCR4/CXCR7 pathway offering benefits for coronary artery disease patients. METHODS: Docking analyses were carried and characterized by Molecular Environment (MOE) software. Protein Data Bank ( http://www.rcsb.org/ ) has been retrieved from protein structure generation and crystal structures of CXCR4 and CXCR7 receptors (PDB code = 3ODU and 6K3F). The active sites of these receptors were evaluated and extracted from full protein and molecular docking protocol was done for compounds against them. The presented parameters included docking scores, ligand binding efficiency, and hydrogen bonding. The pharmacokinetic/toxic properties (ADME/T) were calculated using SwissADME, ProTox-II, and Pred-hERG softwares to predict drug-like properties of the compounds. The thermochemical and molecular orbital analysis, and molecular dynamics simulations were also done. RESULTS: All compounds showed efficient interactions with the CXCR4 and CXCR7 receptors. The docking scores toward proteins 3ODU of CXCR4 and 6K3F of CXCR7 were - 7.71 and - 7.17 for curcumin, - 5.97 and - 6.03 for quercetin, - 5.68 and - 5.49 for trans-resveratrol, and - 4.88 and - 4.70 for (1 s,4 s)-eucalyptol respectively indicating that all compounds, except quercetin, have more interactions with CXCR4 than with CXCR7. The structurally and functionally important residues in the interactive sites of docked CXCR4-complex and CXCR7-complex were identified. The ADME analysis showed that the compounds have drug-like properties. Only (1 s,4 s)-Eucalyptol has potential weak cardiotoxicity. The results of thermochemical and molecular orbital analysis and molecular dynamics simulation validated outcomes of molecular docking study. CONCLUSIONS: Curcumin showed the top binding interaction against active sites of CXCR4 and CXCR7 receptors, with the best safety profile, followed by quercetin, resveratrol, and eucalyptol. All compounds demonstrated drug-like properties. Eucalyptol has promising potential because it can be used by inhalation or skin massage. To our knowledge, this is the first attempt to find binding interactions of these natural agents with CXCR4 and CXCR7 receptors and to predict their druggability.


Assuntos
Produtos Biológicos , Fármacos Cardiovasculares , Simulação de Dinâmica Molecular , Receptores CXCR4 , Receptores CXCR , Transdução de Sinais , Produtos Biológicos/farmacocinética , Fármacos Cardiovasculares/farmacocinética , Humanos , Simulação de Acoplamento Molecular
4.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930837

RESUMO

The particulate guanylyl cyclase A receptor (GC-A), via activation by its endogenous ligands atrial natriuretic peptide (ANP) and b-type natriuretic peptide (BNP), possesses beneficial biological properties such as blood pressure regulation, natriuresis, suppression of adverse remodeling, inhibition of the renin-angiotensin-aldosterone system, and favorable metabolic actions through the generation of its second messenger cyclic guanosine monophosphate (cGMP). Thus, the GC-A represents an important molecular therapeutic target for cardiovascular disease and its associated risk factors. However, a small molecule that is orally bioavailable and directly targets the GC-A to potentiate cGMP has yet to be discovered. Here, we performed a cell-based high-throughput screening campaign of the NIH Molecular Libraries Small Molecule Repository, and we successfully identified small molecule GC-A positive allosteric modulator (PAM) scaffolds. Further medicinal chemistry structure-activity relationship efforts of the lead scaffold resulted in the development of a GC-A PAM, MCUF-651, which enhanced ANP-mediated cGMP generation in human cardiac, renal, and fat cells and inhibited cardiomyocyte hypertrophy in vitro. Further, binding analysis confirmed MCUF-651 binds to GC-A and selectively enhances the binding of ANP to GC-A. Moreover, MCUF-651 is orally bioavailable in mice and enhances the ability of endogenous ANP and BNP, found in the plasma of normal subjects and patients with hypertension or heart failure, to generate GC-A-mediated cGMP ex vivo. In this work, we report the discovery and development of an oral, small molecule GC-A PAM that holds great potential as a therapeutic for cardiovascular, renal, and metabolic diseases.


Assuntos
Fármacos Cardiovasculares , Doenças Cardiovasculares/metabolismo , GMP Cíclico/metabolismo , Peptídeos Natriuréticos/metabolismo , Receptores do Fator Natriurético Atrial , Idoso , Regulação Alostérica , Animais , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/metabolismo , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/farmacologia , Células Cultivadas , Feminino , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Receptores do Fator Natriurético Atrial/química , Receptores do Fator Natriurético Atrial/efeitos dos fármacos , Receptores do Fator Natriurético Atrial/metabolismo
5.
Biomed Pharmacother ; 144: 112354, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34794233

RESUMO

Shengxian Decotion (SXT), a well-known Traditional Chinese Medicine (TCM) formula composed of Astragali Radix, Bupleuri Radix, Cimicifugae Rhizoma, Anemarrhenae Rhizoma and Platycodonis Radix, is clinically considered as an effective formula against cardiovascular diseases. However, the exact effective substance of SXT in treating chronic heart failure (CHF) still remains unclear. In the current study, we investigated the benefit of SXT in doxorubicin (DOX)-induced CHF rats and established a UHPLC-MS/MS method to simultaneously determine 18 key compounds in a subsequent comparative pharmacokinetic study in normal and CHF rats. Histopathological studies, transmission electron microscopy, and echocardiography were applied to assess the therapeutic effect of SXT on DOX-induced CHF rats, which indicated that SXT significantly ameliorated DOX-induced CHF, similar to enalapril. In addition, we successfully established a UHPLC-MS/MS method to determine the pharmacokinetics of the components in rat plasma, which was validated with good linearity, inter-day and intra-day precisions and accuracies, matrix effects, extraction recovery, and stability values. Our results showed that only astragaloside IV showed increased plasma exposure in the CHF rats, while saikosaponin A, quercetin, timosaponin B-II, ferulic acid, isoferulic acid and formononetin decreased compared to their pharmacokinetic characteristics in the normal and CHF rats. This study demonstrates that SXT enjoys obvious therapeutic effect on DOX-induced CHF rats, and the altered metabolism of some compounds in SXT is affected by the pathological state of CHF rats. Our findings provide a better understanding of the in vivo exposure to complex compounds of SXT, supporting effective substance screening and further investigation of the therapeutic mechanism.


Assuntos
Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/uso terapêutico , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Animais , Astragalus propinquus , Cromatografia Líquida de Alta Pressão , Doença Crônica , Eletrocardiografia/efeitos dos fármacos , Insuficiência Cardíaca/induzido quimicamente , Masculino , Espectrometria de Massas , Medicina Tradicional Chinesa , Ratos , Ratos Sprague-Dawley , Saponinas/sangue , Triterpenos/sangue
6.
Bioorg Med Chem Lett ; 50: 128325, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403724

RESUMO

Heart failure (HF) treatment remains a critical unmet medical need. Studies in normal healthy volunteers and HF patients have shown that [Pyr1]apelin-13, the endogenous ligand for the APJ receptor, improves cardiac function. However, the short half-life of [Pyr1]apelin-13 and the need for intravenous administration have limited the therapeutic potential for chronic use. We sought to identify potent, small-molecule APJ agonists with improved pharmaceutical properties to enable oral dosing in clinical studies. In this manuscript, we describe the identification of a series of pyrimidinone sulfones as a structurally differentiated series to the clinical lead (compound 1). Optimization of the sulfone series for potency, metabolic stability and oral bioavailability led to the identification of compound 22, which showed comparable APJ potency to [Pyr1]apelin-13 and exhibited an acceptable pharmacokinetic profile to advance to the acute hemodynamic rat model.


Assuntos
Receptores de Apelina/agonistas , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/farmacocinética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Animais , Área Sob a Curva , Fármacos Cardiovasculares/síntese química , Desenho de Fármacos , Meia-Vida , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Macaca fascicularis , Estrutura Molecular , Pirimidinonas/química , Pirimidinonas/farmacologia , Ratos , Relação Estrutura-Atividade
7.
Drug Metab Dispos ; 49(8): 619-628, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34011533

RESUMO

Omecamtiv mecarbil (OM) is a novel cardiac myosin activator that is currently in clinical development for the treatment of heart failure. The absorption and disposition of [14C]OM (60 µCi) were studied after a single intravenous infusion (35 mg over 1 hour) or oral solution dose (35 mg) in 14 healthy male subjects. Mean recovery of the administered [14C]OM dose was 85.1% and 86.5% over 336 hours for the intravenous and oral routes, respectively. After intravenous dosing, 47.8% and 37.3% of the dose was recovered in urine and feces, respectively; after oral dosing, 48.6% and 38.0% was recovered in urine and feces, respectively. Unchanged OM accounted for a minor percentage of radioactivity in urine (mean 7.7% of dose) and feces (mean 4.1% of dose) across all subjects. The major metabolites recovered in urine and feces were M3 (decarbamoylation product) and sequential metabolite M4 (lactam of M3), which accounted for means of 26.5% and 11.6% of the administered dose, respectively. The CYP4 family of enzymes was primarily responsible for the formation of M3 based on in vitro studies. Other metabolic pathways accounted for 14.9% of the administered dose. In pooled plasma, OM, M3, and M4 accounted for 83.8%, 6.0%, and 3.3% of the total [14C]OM-related materials. No other plasma metabolites constituted more than 3% of the administered dose. The bioavailability for OM solution was 93.5% after rapid and extensive absorption. SIGNIFICANCE STATEMENT: This study characterized the absorption and disposition of OM, a novel small molecule being developed for the treatment of heart failure. OM was primarily cleared through metabolism by the CYP4 family through oxidative cleavage of a terminal carbamate moiety that resembles hydrolysis.


Assuntos
Família 4 do Citocromo P450/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Eliminação Hepatobiliar/fisiologia , Absorção Intestinal/fisiologia , Eliminação Renal/fisiologia , Ureia/análogos & derivados , Administração Intravenosa , Administração Oral , Adulto , Disponibilidade Biológica , Biotransformação , Fármacos Cardiovasculares/administração & dosagem , Fármacos Cardiovasculares/farmacocinética , Voluntários Saudáveis , Humanos , Infusões Intravenosas , Masculino , Ureia/administração & dosagem , Ureia/farmacocinética
8.
J Pharmacol Exp Ther ; 377(2): 218-231, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33648939

RESUMO

Cardiovascular adverse effects in drug development are a major source of compound attrition. Characterization of blood pressure (BP), heart rate (HR), stroke volume (SV), and QT-interval prolongation are therefore necessary in early discovery. It is, however, common practice to analyze these effects independently of each other. High-resolution time courses are collected via telemetric techniques, but only low-resolution data are analyzed and reported. This ignores codependencies among responses (HR, BP, SV, and QT-interval) and separation of system (turnover properties) and drug-specific properties (potencies, efficacies). An analysis of drug exposure-time and high-resolution response-time data of HR and mean arterial blood pressure was performed after acute oral dosing of ivabradine, sildenafil, dofetilide, and pimobendan in Han-Wistar rats. All data were modeled jointly, including different compounds and exposure and response time courses, using a nonlinear mixed-effects approach. Estimated fractional turnover rates [h-1, relative standard error (%RSE) within parentheses] were 9.45 (15), 30.7 (7.8), 3.8 (13), and 0.115 (1.7) for QT, HR, total peripheral resistance, and SV, respectively. Potencies (nM, %RSE within parentheses) were IC 50 = 475 (11), IC 50 = 4.01 (5.4), EC 50 = 50.6 (93), and IC 50 = 47.8 (16), and efficacies (%RSE within parentheses) were I max = 0.944 (1.7), Imax = 1.00 (1.3), E max = 0.195 (9.9), and Imax = 0.745 (4.6) for ivabradine, sildenafil, dofetilide, and pimobendan. Hill parameters were estimated with good precision and below unity, indicating a shallow concentration-response relationship. An equilibrium concentration-biomarker response relationship was predicted and displayed graphically. This analysis demonstrates the utility of a model-based approach integrating data from different studies and compounds for refined preclinical safety margin assessment. SIGNIFICANCE STATEMENT: A model-based approach was proposed utilizing biomarker data on heart rate, blood pressure, and QT-interval. A pharmacodynamic model was developed to improve assessment of high-resolution telemetric cardiovascular safety data driven by different drugs (ivabradine, sildenafil, dofetilide, and pimobondan), wherein system- (turnover rates) and drug-specific parameters (e.g., potencies and efficacies) were sought. The model-predicted equilibrium concentration-biomarker response relationships and was used for safety assessment (predictions of 20% effective concentration, for example) of heart rate, blood pressure, and QT-interval.


Assuntos
Biomarcadores Farmacológicos/sangue , Pressão Sanguínea , Fármacos Cardiovasculares/toxicidade , Frequência Cardíaca , Animais , Cardiotoxicidade/sangue , Cardiotoxicidade/etiologia , Cardiotoxicidade/fisiopatologia , Fármacos Cardiovasculares/administração & dosagem , Fármacos Cardiovasculares/farmacocinética , Ivabradina/administração & dosagem , Ivabradina/farmacocinética , Ivabradina/toxicidade , Masculino , Fenetilaminas/administração & dosagem , Fenetilaminas/farmacocinética , Fenetilaminas/toxicidade , Piridazinas/administração & dosagem , Piridazinas/farmacocinética , Piridazinas/toxicidade , Ratos , Ratos Wistar , Citrato de Sildenafila/administração & dosagem , Citrato de Sildenafila/farmacocinética , Citrato de Sildenafila/toxicidade , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacocinética , Sulfonamidas/toxicidade
9.
Biomed Chromatogr ; 35(7): e5095, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33607700

RESUMO

A sensitive and robust method has been developed using an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay to quantify Tat-K13, a novel interfering peptide for the treatment of ischemic stroke, in human plasma. Automated solid-phase extraction on a Waters Oasis WCX (30 µm, 10 mg) 96-well plate was used to extract Tat-K13 from human plasma and the extracts were separated on a Waters Acquity CSH column (2.1 × 50 mm i.d., 1.7 µm) with a gradient elution method by mobile phase A (nonafluoropentanoic acid-acetic acid-water, 1:2:1000, v/v/v) and B (nonafluoropentanoic acid-acetic acid-water-acetonitrile, 1:2:100:900, v/v/v/v). The method was fully validated following international bioanalytical guidelines and showed good linearity from 2.10 to 1,050 ng/ml. The method was successfully applied to investigate the clinical pharmacokinetics of Tat-K13 in health volunteers. Rapid elimination of Tat-K13 from the body was observed, with half-life ranging from 0.26 to 0.78 h across different dose levels. The exposure of Tat-K13 was approximately dose-dependent in terms of the area under the concentration-time curve and peak concentration.


Assuntos
Fármacos Cardiovasculares , Cromatografia Líquida de Alta Pressão/métodos , AVC Isquêmico/tratamento farmacológico , Peptídeos , Espectrometria de Massas em Tandem/métodos , Adolescente , Adulto , Fármacos Cardiovasculares/sangue , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/uso terapêutico , Humanos , Pessoa de Meia-Idade , Peptídeos/sangue , Peptídeos/farmacocinética , Peptídeos/uso terapêutico , Reprodutibilidade dos Testes , Adulto Jovem
10.
Clín. investig. arterioscler. (Ed. impr.) ; 33(1): 33-40, ene.-feb. 2021. tab, graf
Artigo em Espanhol | IBECS | ID: ibc-201980

RESUMO

Los inhibidores del cotransportador de sodio-glucosa tipo 2 (iSGLT2) fueron incialmente desarrollados para el tratamiento de la diabetes por su actividad hipoglucemiante. Sin embargo, a la luz de los estudios clínicos más recientes, están revolucionando el abordaje de la enfermedad cardiovascular (CV) en el paciente diabético. En el año 2015, el ensayo clínico EMPA-REG OUTCOME nos demuestra por primera vez que la empagliflozina -un fármaco considerado «antidiabético»- reduce la mortalidad CV y por cualquier causa, además de eventos CV mayores, hospitalización por IC y progresión de enfermedad renal. Posteriormente, otros estudios clínicos con agentes del mismo grupo farmacológico, CANVAS, con canagliflozina y DECLARE-TIMI-58 con dapagliflozina, corroboran la exitencia de los beneficios CV asociados a la inhibición del receptor SGLT2. Los beneficios observados los sitúan más allá de simples agentes hipoglucemiantes, con un demostrado efecto cardionefroprotector en la enfermedad aterosclerótica, insuficiencia cardiaca, mortalidad total, mortalidad cardiovascular y progresión de insuficiencia renal. Actualmente ya son una realidad en pacientes diabéticos de alto y muy alto riesgo cardiovascular, mientras su evidencia en el paciente no diabético es cada vez mayor. Asistimos, por tanto, a un cambio de paradigma y posiblemente al nacimiento de una nueva especialidad, la cardio-endocrinología, con la implicación de nuevos tratamientos que deben ser considerados más que sólo fármacos antidiabéticos


The sodium-glucose co-transporter 2 inhibitors (SGLT2i) were first conceived to treat type 2 diabetes due to their hypoglycaemic effect. However, due to an increasing number of studies, SGLT2i are changing the way we treat, and understand, diabetes, and cardiovascular risk, in general. The EMPA-REG OUTCOME clinical trial, in 2015, showed for the first time that empagliflozine - a glucose lowering agent - lowers the risk of death from cardiovascular causes and death from any cause. Also, this SGLT2i lowered hospital admission for heart failure and delayed renal function worsening. From then on, other clinical trials with SGLT2i such as CANVAS (canagliflozin) and DECLARE-TIMI-58 (dapagliflozin) confirmed these positive effects. With a proven and non-related glucose-lowering effect on heart failure, overall death, cardiovascular death, and renal function, SGLT2i stands out among the rest of anti-diabetic drugs. Since its role in treating patients with heart failure and type 2 diabetes has been undoubtedly established, new studies are paving the way for non-diabetic patients as well. A potential paradigm shift is being witnessed and, probably, the dawn of a new field, cardio-endocrinology, which involves new and far-reaching pharmacological agents


Assuntos
Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacocinética , Hipoglicemiantes/farmacocinética , Fármacos Cardiovasculares/farmacocinética , Insuficiência Cardíaca/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico
11.
Cardiovasc Drugs Ther ; 35(5): 1045-1056, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33411112

RESUMO

Ivabradine is a unique agent that is distinct from beta-blockers and calcium channel blockers as it reduces heart rate without affecting myocardial contractility or vascular tone. Ivabradine is a use-dependent inhibitor targeting the sinoatrial node. It is approved for use in the United States as an adjunct therapy for heart rate reduction in patients with heart failure with reduced ejection fraction. In this scenario, ivabradine has demonstrated improved clinical outcomes due to reduction in heart failure readmissions. However, there has been conflicting evidence from prospective studies and randomized controlled trials for its use in stable ischemic heart disease regarding efficacy in symptom reduction and mortality benefit. Ivabradine may also play a role in the treatment of patients with inappropriate sinus tachycardia, who often cannot tolerate beta-blockers and/or calcium channel blockers. In this review, we highlight the evidence for the nuances of using ivabradine in heart failure, stable ischemic heart disease, and inappropriate sinus tachycardia to raise awareness for its vital role in the treatment of select populations.


Assuntos
Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Ivabradina/farmacologia , Ivabradina/uso terapêutico , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/farmacocinética , Humanos , Ivabradina/efeitos adversos , Ivabradina/farmacocinética , Isquemia Miocárdica/tratamento farmacológico , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Volume Sistólico/efeitos dos fármacos , Taquicardia Sinusal/tratamento farmacológico
12.
Cardiovasc Drugs Ther ; 35(3): 441-454, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32424652

RESUMO

PURPOSE: Major depressive disorder (MDD) and anxiety disorders (AD) are both highly prevalent among individuals with arrhythmia, ischemic heart disease, heart failure, hypertension, and dyslipidemia. There should be increased support for MDD and AD diagnosis and treatment in individuals with cardiac diseases, because treatment rates have been low. However, cardiac-psychiatric drug interaction can make pharmacologic treatment challenging. METHODS: The objective of the present systematic review was to investigate cardiac-psychiatric drug interactions in three different widely used pharmacological databases (Micromedex, Up to Date, and ClinicalKey). RESULTS: Among 4914 cardiac-psychiatric drug combinations, 293 significant interactions were found (6.0%). When a problematic interaction is detected, it may be easier to find an alternative cardiac medication (32.6% presented some interaction) than a psychiatric one (76.9%). Antiarrhythmics are the major class of concern. The most common problems produced by these interactions are related to cardiotoxicity (QT prolongation, torsades de pointes, cardiac arrest), increased exposure of cytochrome P450 2D6 (CYP2D6) substrates, or reduced renal clearance of organic cation transporter 2 (OCT2) substrates and include hypertensive crisis, increased risk of bleeding, myopathy, and/or rhabdomyolysis. CONCLUSION: Unfortunately, there is considerable inconsistency among the databases searched, such that a clinician's discretion and clinical experience remain invaluable tools for the management of patients with comorbidities present in psychiatric and cardiac disorders. The possibility of an interaction should be considered. With a multidisciplinary approach, particularly involving a pharmacist, the prescriber should be alerted to the possibility of an interaction. MDD and AD pharmacologic treatment in cardiac patients could be implemented safely both by cardiologists and psychiatrists. TRIAL REGISTRATION: PROSPERO Systematic Review Registration Number: CRD42018100424.


Assuntos
Antipsicóticos/farmacologia , Fármacos Cardiovasculares/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Bases de Dados de Produtos Farmacêuticos/estatística & dados numéricos , Transtorno Depressivo Maior/tratamento farmacológico , Antipsicóticos/efeitos adversos , Antipsicóticos/farmacocinética , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/farmacocinética , Doenças Cardiovasculares/epidemiologia , Citocromo P-450 CYP2D6/efeitos dos fármacos , Transtorno Depressivo Maior/epidemiologia , Interações Medicamentosas , Humanos , Taxa de Depuração Metabólica , Transportador 2 de Cátion Orgânico/efeitos dos fármacos
13.
Eur J Pharm Biopharm ; 158: 72-82, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33075477

RESUMO

Interventional therapies such as drug-eluting stents (DES) and drug-coated balloons (DCB) have significantly improved the clinical outcomes of patients with coronary occlusions in recent years. Despite this marked improvement, ischemic cardiovascular disease remains the most common cause of death worldwide. To address this, research efforts are focused on improving the safety and efficacy of the next generation of these devices. However, current experimental methods are unable to account for the influence of atherosclerotic lesions on drug uptake and retention. Therefore, in this study, we used an integrated approach utilizing both in vitro and in silico methods to assess the performance of DCB therapy. This approach was validated against existing in vivo results before being used to numerically estimate the effect of the atheroma. A bolus release of sirolimus was observed with our coating matrix. This, coupled with the rapid saturation of specific and non-specific binding sites observed in our study, indicated that increasing the therapeutic dose coated onto the balloons might not necessarily result in greater uptake and/or retention. Additionally, our findings alluded to an optimal exposure time, dependent on the coating matrix, for the DCBs to be expanded against the vessel. Moreover, our findings suggest that a biphasic drug release profile might be beneficial for establishing and maintaining the saturation of bindings sites within severely occluded vessels. Ultimately, we have demonstrated that computational methods may be capable of assessing the efficacy of DCB therapy as well as predict the influence of atherosclerotic lesions on said efficacy.


Assuntos
Angioplastia Coronária com Balão/instrumentação , Aterosclerose/complicações , Fármacos Cardiovasculares/farmacocinética , Oclusão Coronária/cirurgia , Reestenose Coronária/prevenção & controle , Stents Farmacológicos , Aterosclerose/patologia , Fármacos Cardiovasculares/administração & dosagem , Simulação por Computador , Oclusão Coronária/complicações , Oclusão Coronária/patologia , Reestenose Coronária/patologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Humanos , Modelos Cardiovasculares , Sirolimo/administração & dosagem , Sirolimo/farmacocinética , Resultado do Tratamento
14.
AAPS J ; 22(6): 129, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033962

RESUMO

Ivabradine and its metabolite both demonstrate heart rate-reducing effect (If current inhibitors) and undergo CYP3A4 metabolism. The purpose of this study was to develop a joint parent-metabolite physiologically based pharmacokinetic (PBPK)/pharmacodynamic (PD) model to predict the PK and PD of ivabradine and its metabolite following intravenous (i.v.) or oral administration (alone or co-administered with CYP3A4 inhibitors). Firstly, a parent-metabolite disposition model was developed and optimised using individual plasma concentration-time data following i.v. administration of ivabradine or metabolite within a Bayesian framework. Secondly, the model was extended and combined with a mechanistic intestinal model to account for oral absorption and drug-drug interactions (DDIs) with CYP3A4 inhibitors (ketoconazole, grapefruit juice). Lastly, a PD model was linked to the PBPK model to relate parent and metabolite PK to heart rate (HR) reduction. The disposition model described successfully parent-metabolite PK following i.v. administration. Following integration of a gut model, the PBPK model adequately predicted plasma concentration profiles and the DDI risk (92% and 85% of predicted AUC+inhibitor/AUCcontrol and Cmax+inhibitor/Cmaxcontrol for ivabradine and metabolite within the prediction limits). Ivabradine-metabolite PBPK model was linked to PD by using the simulated unbound parent-metabolite concentrations in the heart. This approach successfully predicted the effects of both entities on HR (observed vs predicted - 7.7/- 5.9 bpm and - 15.8/- 14.0 bpm, control and ketoconazole group, respectively). This study provides a framework for PBPK/PD modelling of a parent-metabolite and can be scaled to other populations or used for investigation of untested scenarios (e.g. evaluation of DDI risk in special populations).


Assuntos
Fármacos Cardiovasculares/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Ivabradina/farmacocinética , Modelos Biológicos , Administração Intravenosa , Administração Oral , Adulto , Área Sob a Curva , Teorema de Bayes , Fármacos Cardiovasculares/administração & dosagem , Simulação por Computador , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Interações Medicamentosas , Enterócitos , Feminino , Sucos de Frutas e Vegetais/efeitos adversos , Voluntários Saudáveis , Frequência Cardíaca/efeitos dos fármacos , Humanos , Absorção Intestinal/fisiologia , Ivabradina/administração & dosagem , Cetoconazol/administração & dosagem , Cetoconazol/farmacocinética , Masculino , Distribuição Tecidual
15.
Arch Pharm (Weinheim) ; 353(12): e2000146, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32886393

RESUMO

The natural isomers of resveratrol, cis- and trans-resveratrol, are natural phenolic substances synthetized via the shikimate pathway and found in many sources, including grapes, peanuts, blackberries, pistachios, cacao, cranberries, and jackfruits. They have functional and pharmacological properties such as anticarcinogenic, antidiabetic, anti-inflammatory, and cardioprotective activities. The aim of this article is to review the data published on resveratrol and its isomers, and their biosynthesis in plants, food sources, health and toxic effects, and the excretion of their metabolites. Due to its contribution to the promotion of human health, it is convenient to gather more knowledge about its functional properties, food sources, and the interactions with the human body during the processes of eating, digestion, absorption, biotransformation, and excretion, to combine this information to improve the understanding of these substances.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Fármacos Cardiovasculares/farmacologia , Alimentos , Hipoglicemiantes/farmacologia , Plantas/metabolismo , Resveratrol/farmacologia , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/toxicidade , Antineoplásicos Fitogênicos/metabolismo , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/toxicidade , Disponibilidade Biológica , Biotransformação , Fármacos Cardiovasculares/metabolismo , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/toxicidade , Vias de Eliminação de Fármacos , Absorção Gastrointestinal , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/toxicidade , Isomerismo , Resveratrol/metabolismo , Resveratrol/farmacocinética , Resveratrol/toxicidade
16.
J Cardiovasc Pharmacol ; 76(2): 189-196, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32769849

RESUMO

OBJECTIVE: The natural molecule α-lipoic acid has been shown to be partially cytoprotective through antioxidant and antiapoptotic mechanisms. To obtain an initial assessment of the safety and potential efficacy of a synthetic derivative, CMX-2043, in preventing ischemic complications of percutaneous coronary intervention (PCI) we conducted the Subjects Undergoing PCI and Perioperative Reperfusion Treatment (SUPPORT-1) trial, the first patient experience with this agent. METHODS AND RESULTS: SUPPORT-1 was a phase 2a, 6-center, international, placebo-controlled, randomized, double-blind trial. A total of 142 patients were randomized to receive a single intravenous bolus dose of drug or placebo administered 15-60 minutes before PCI. Cardiac biomarker assessments included serial measurements of creatine kinase myocardial band (CK-MB) at 6, 12, 18, and 24 hours after PCI and a single measurement of troponin T (TnT) at 24 hours. Peak concentrations of CK-MB and TnT were significantly reduced in the 2.4 mg/kg group compared with placebo (P = 0.05 and 0.03, respectively). No subject administered 2.4 mg/kg of CMX-2043 had an increase of CK-MB to ≥3X upper limit of normal versus 16% for placebo (P = 0.02); 16% of the 2.4-mg/kg dose group developed an elevation of TnT to ≥3X upper limit of normal versus 39% in the placebo group (P = 0.05). No drug-related serious adverse events were observed in any group. CONCLUSION: These data suggest that CMX-2043 may reduce PCI periprocedural myonecrosis and support further clinical evaluation of this novel agent for its potential cytoprotective effects.


Assuntos
Angioplastia Coronária com Balão , Fármacos Cardiovasculares/uso terapêutico , Doença da Artéria Coronariana/terapia , Dipeptídeos/uso terapêutico , Miócitos Cardíacos/efeitos dos fármacos , Ácido Tióctico/análogos & derivados , Idoso , Angioplastia Coronária com Balão/efeitos adversos , Biomarcadores/sangue , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/farmacocinética , Doença da Artéria Coronariana/diagnóstico por imagem , Creatina Quinase Forma MB/sangue , Dipeptídeos/efeitos adversos , Dipeptídeos/farmacocinética , Método Duplo-Cego , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Necrose , Estudos Prospectivos , Ácido Tióctico/efeitos adversos , Ácido Tióctico/farmacocinética , Ácido Tióctico/uso terapêutico , Fatores de Tempo , Resultado do Tratamento , Troponina T/sangue , Estados Unidos
17.
Pharmacol Res ; 159: 105031, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32562816

RESUMO

Thrombosis initiated by abnormal platelet aggregation is a pivotal pathological event that precedes most cases of cardiovascular diseases (CVD). Recently, growing evidence indicates that platelet could be a potential target for CVD prevention. However, as the conventional antithrombotic management strategy, applications of current antiplatelet agents are somewhat limited by their various side effects, such as bleeding risk and drug resistance. Hence, efforts have been made to search for agents as complementary therapies. Ginsenoside, the principal active component extracted from Panax ginseng, has gained much attention for its regulations on multiple crucial events of platelet aggregation. From structural characteristics to clinical applications, this review anatomized the intrinsic structure-function relationship of antiplatelet potency of ginsenosides, and the involved signal pathways were specifically summarized. Additionally, the emphasis was placed on clinical studies that investigate the antithrombotic efficacy of ginsenosides in the treatment of CVD. Further, a broad overview of approaches for improving the bioavailability of ginsenosides was concluded. Limitations and prospects of current studies were also discussed. This study may provide some new insights into the systematic understanding of ginsenosides in CVD treatment and lay a foundation for future research.


Assuntos
Plaquetas/efeitos dos fármacos , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Ginsenosídeos/uso terapêutico , Músculo Liso Vascular/efeitos dos fármacos , Neointima , Inibidores da Agregação Plaquetária/uso terapêutico , Agregação Plaquetária/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Animais , Disponibilidade Biológica , Plaquetas/metabolismo , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/farmacocinética , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/patologia , Ginsenosídeos/efeitos adversos , Ginsenosídeos/farmacocinética , Humanos , Estrutura Molecular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/farmacocinética , Transdução de Sinais , Relação Estrutura-Atividade
18.
Biomed Pharmacother ; 128: 110308, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32480216

RESUMO

With the advancement of science and technology, the living standards of human beings have continuously improved, but the incidence and mortality from atherosclerosis worldwide have also increased by year. Although interventional surgery and the continuous development of new drugs have significant therapeutic effects, their side effects cannot be ignored. Polydatin, an active ingredient isolated from the natural medicine Polygonum cuspidatum, has been shown to have a prominent role in the treatment of cardiovascular diseases. Polydatin treats atherosclerosis mainly from three aspects: anti-inflammatory, regulating lipid metabolism and anti-oxidative stress. This article will review the pharmacological mechanism of polydatin in anti-atherosclerosis, the biological characteristics of Polygonum cuspidatum, the toxicology and pharmacokinetics of polydatin and will provide ideas for further research.


Assuntos
Artérias/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Fármacos Cardiovasculares/uso terapêutico , Glucosídeos/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estilbenos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Antioxidantes/uso terapêutico , Artérias/metabolismo , Artérias/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/farmacocinética , Glucosídeos/efeitos adversos , Glucosídeos/farmacocinética , Humanos , Mediadores da Inflamação/metabolismo , Placa Aterosclerótica , Transdução de Sinais , Estilbenos/efeitos adversos , Estilbenos/farmacocinética
19.
JACC Cardiovasc Interv ; 13(12): 1391-1402, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32473887

RESUMO

Although drug-eluting stents are still the default interventional treatment of coronary artery disease, drug-coated balloons (DCBs) represent a novel alternative therapeutic strategy in certain anatomic conditions. The effect of DCBs is based on the fast and homogenous transfer of antiproliferative drugs into the vessel wall during single balloon inflation by means of a lipophilic matrix without the use of permanent implants. Although their use is established for in-stent restenosis of both bare-metal and drug-eluting stents, recent randomized clinical data demonstrate a good efficacy and safety profile in de novo small-vessel disease and high bleeding risk. In addition, there are other emerging indications (e.g., bifurcation lesions, large-vessel disease, diabetes mellitus, acute coronary syndromes). Because the interaction among the different delivery balloon designs, doses, formulations, and release kinetics of the drugs used is important, there seems to be no "class effect" of DCBs. On the basis of the amount of recently published data, the International DCB Consensus Group provides this update of previous recommendations summarizing the historical background, technical considerations such as choice of device and implantation technique, possible indications, and future perspectives.


Assuntos
Angioplastia Coronária com Balão/instrumentação , Cateteres Cardíacos , Fármacos Cardiovasculares/administração & dosagem , Doença da Artéria Coronariana/terapia , Angioplastia Coronária com Balão/efeitos adversos , Angioplastia Coronária com Balão/mortalidade , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/farmacocinética , Tomada de Decisão Clínica , Consenso , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/mortalidade , Stents Farmacológicos , Desenho de Equipamento , Humanos , Fatores de Risco , Resultado do Tratamento
20.
BMJ Open ; 10(3): e028514, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32217557

RESUMO

INTRODUCTION: Subarachnoid haemorrhage (SAH) from a ruptured cerebral aneurysm carries high morbidity and mortality. Despite huge advances in techniques to secure the aneurysm, there has been little progress in the treatment of the deleterious effects of the haemorrhage.Sulforaphane is an Nrf2 inducer with anti-oxidant and anti-inflammatory properties. It has been shown to improve clinical outcome in experimental models of SAH, but is unstable. SFX-01 (Evgen Pharma) is a novel composition comprised of synthetic sulforaphane stabilised within an α-cyclodextrin complex. On ingestion, the complex releases sulforaphane making SFX-01 an ideal vehicle for delivery of sulforaphane. METHODS AND ANALYSIS: The objective of the study is to assess the safety, pharmacokinetics and efficacy of SFX-01. This is a prospective, multicentre, randomised, double-blind placebo-controlled trial in patients aged 18-80 years with aneurysmal subarachnoid haemorrhage in the previous 48 hours. 90 patients will be randomised to receive SFX-01 (300 mg) or placebo two times per day for up to 28 days.Safety will be assessed using blood tests and adverse event reporting.Pharmacokinetics will be assessed based on paired blood and cerebrospinal fluid (CSF) sulforaphane levels on day 7. A subgroup will have hourly samples taken during 6 hours post-dosing on days 1 and 7. Pharmacodynamics will be assessed by haptoglobin and malondialdehyde levels, and maximum flow velocity of middle cerebral artery will be measured by transcranial Doppler ultrasound.Clinical outcomes will be assessed at days 28, 90 and 180 with modified Rankin Scale, Glasgow Outcome Score, SAH Outcome Tool, Short Form-36, Brain Injury Community Rehabilitation Outcome Scales and Check List for Cognitive and Emotional consequences following stroke. MRI at 6 months including quantitative susceptibility mapping and volumetric T1 will measure iron deposition and cortical volume.Safety, CSF sulforaphane concentration and middle cerebral artery flow velocity will be primary outcomes and all others secondary. ETHICS AND DISSEMINATION: Ethical approval was obtained from South Central Hampshire A committee. Outcomes of the trial will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: NCT02614742.


Assuntos
Fármacos Cardiovasculares/administração & dosagem , Isotiocianatos/administração & dosagem , Hemorragia Subaracnóidea/tratamento farmacológico , Administração Oral , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/uso terapêutico , Protocolos Clínicos , Formas de Dosagem , Método Duplo-Cego , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Feminino , Humanos , Isotiocianatos/farmacocinética , Isotiocianatos/uso terapêutico , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sulfóxidos , Resultado do Tratamento , Adulto Jovem , alfa-Ciclodextrinas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...